

PII: S0040-4039(97)00517-0

1,3-ASYMMETRIC INDUCTION IN RETRO-[1,4]-BROOK REARRANGEMENTS OF LITHIATED ALLYL METHYL ETHERS AND LITHIATED ALLYL MOM ETHERS

Dirk Goeppel and Reinhard Brückner*

Institut für Organische Chemie der Georg-August-Universität, Tammannstr. 2, D-37077 Göttingen, Germany

Abstract: The tBuPh₂Si-containing allyl methyl ether cis-2 and its trans isomer were lithiated with sBuLi at -78°C in THF. Thereupon, diastereoselective retro-[1,4]-Brook rearrangements occurred which furnished the allylsilane anti,trans-5 with 86-87% diastereocontrol. The analogous allyl MOM ethers cis- and trans-3 underwent similar retro-[1,4]-Brook rearrangements upon treatment with sBuLi. They yielded the allylsilane anti,trans-6 with 80-82% diastereoselectivity. © 1997 Elsevier Science Ltd.

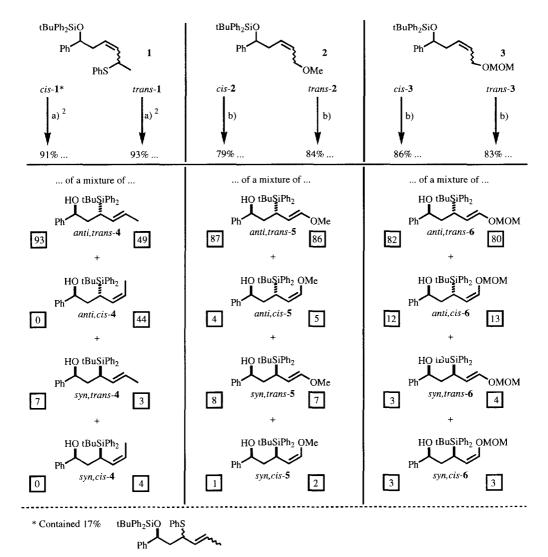

Studying retro-[1,4]-Brook rearrangements 1 of γ -siloxylated organolithium compounds as a stereose-lective access to α -chiral allylsilanes with variable substitution patterns, we recently reported the reductive lithiation of the allyl phenyl sulfides cis- and trans-1 and the stereochemistry of the ensueing rearrangements to the α -chiral γ -methylated allylsilanes 4 (Scheme 1) 2 . We now found that the γ -siloxylated allyl methyl ethers cis- and trans-2 3 and the analogous methoxymethyl ("MOM") ethers cis- and trans-3 3 are lithiated with sBuLi at -78°C in THF; thereafter, smooth retro-[1,4]-Brook rearrangements occur leading to the α -chiral γ -methoxylated allylsilanes 5 and the analogous γ -MOMO-substituted allylsilanes 6, respectively (Scheme 1).

Table 1. Structure-proving ¹H-NMR shifts in CDCl₃ of all diastereomers of the retro-Brook products 4 ² (300 MHz), 5 (500 MHz), and 6 (500 MHz)

	HO tBuSiPh ₂ Ph 2 3 5					HO tBuSiPh ₂ 5 Ph 2 3 5 OMe					HO tBuSiPh ₂ 6 Ph 3 3 5 OMOM				
Isomer:	2-H ^A	2-H ^B	3-H	5-H	tBu	2-H ^A	2-H ^B	3-H	5-H	tBu	2-H ^A	2-H ^B	3-Н	5-H	tBu
anti,trans-	1.90	2.08	2.23	5.35	1.04	1.69	1.98	1.91	6.18	0.98	ca. 1.73	ca. 1.96	ca. 1.96	6.08	0.99
syn,trans-	ca. 1.62	2.21	3.12	5.48	1.18	1.41	1.99	2.71	6.34	1.09	1.40	ca. 1.95	ca. 2.7	6.24	1.10
anti,cis-	ca. 1.90	2.27	2.49	ca. 5.34	1.05	1.58	1.99	2.69	5.94	1.00	1.61	2.02	2.75	6.24	1.02
syn,cis-	1.51	2.28	3.47	ca. 5.54	1.19	1.44	1.93	3.23	6.06	1.09	1.44	1.96	3.29	6.33	1.10

After separating all diastereomers of the allylsilanes 5 and 6 by flash chromatography 4 the C=C bond configurations were deduced from the olefinic coupling constants $^3J_{trans} = 12.4-12.6$ Hz vs. $^3J_{cis} = 6.0-6.4$ Hz. The *syn* or *anti* orientations of the C¹-OH vs. C³-SiPh₂tBu bonds were inferred from consistently obeyed 1 H-NMR shift analogies with the reference compounds *anti,trans*-, *syn,trans*-, *anti,cis*-, and *syn,cis*-4 (Table 1): The values of $(\delta_{2\text{-H}}A)$, $\delta_{3\text{-H}}$, $\delta_{3\text{-H}}$, $\delta_{5\text{-H}}$, and $\delta_{6\text{Bu}}$ were larger in all *syn* vs. *anti* isomers of a given C=C geometry.

The lithioether intermediates of Scheme 1 (central and right column) rearrange with moderate diastereose-lectivities of 79-86% to the allylsilanes *anti,trans*-5 and -6; this is independent from whether the starting material 2 or 3 is a *cis* or *trans* olefin. The total *anti* selectivities (91-94%) closely resemble the 93% *anti*-selectivities of the retro-[1,4]-Brook rearrangements starting from the sulfides *cis*-1/*iso*-1 and *trans*-1 (Scheme 1, left

Scheme 1. a) Lithium naphthalenide (2.5 equiv.), THF, -78°C, 30 min.- b) sBuLi (3.0 equiv.), THF, -78°C, 2 h.

column). Surprisingly, our lithioether rearrangements furnished the enol ethers **5** and the enol acetals **6** with 84-95% trans preference: Lithiated allyl methyl (or ethyl or phenyl) ether reacts at the γ -position with electrophiles so that the resulting C-CH=CH-OR moiety is exclusively cis-configurated ⁵. We are unaware, though, of analogous results with lithiated γ -substituted allyl ethers which would model our rearrangement intermediates better. In our hands lithio-trans-1-methoxy-5-phenyl-2-propene reacted with D₂O (\rightarrow 85%) or Me₃SiCl (\rightarrow 66%) α and not γ to the MeO group which leaves open whether the MeO group was previously cis or trans oriented.

REFERENCES AND NOTES:

- 1. For background information cf. ref. 1-9 of Gibson, C.; Buck, T.; Noltemeyer, M.; Brückner, R. *Tetrahedron Lett.* **1997**, 38 (immediately preceding article in this issue).
- 2. Behrens, K.; Kneisel, B. O.; Noltemeyer, M.; Brückner, R. Liebigs Ann. 1995, 385-400.
- 3. All new compounds gave satisfactory H-NMR and IR spectra and a correct combustion analysis.
- 4. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- D. A. Evans, G. C. Andrews, B. Buckwalter, J. Am. Chem. Soc. 1974, 96, 5560-5561.— W. C. Still, T. L. MacDonald, J. Am. Chem. Soc. 1974, 96, 5561-5563.

(Received in Germany 28 February 1997; accepted 14 March 1997)